# Ulrich Müller

October 15th, 2019

"Inference for the Mean"

Abstract:

Consider inference about the mean of a population with finite variance, based on an i.i.d. sample. The usual t-statistic yields correct inference in large samples, but heavy tails induce poor small sample behavior. This paper combines extreme value theory for the smallest and largest observations with a normal approximation for the t-statistic of a truncated sample to obtain more accurate inference. This alternative approximation is shown to provide a refinement over the standard normal approximation to the full sample t-statistic under more than two but less than three moments, while the bootstrap does not. Small sample simulations suggest substantial size improvements over the bootstrap, also in an application to linear regression inference with clustered standard errors.